Using a Single V\textsubscript{DD} pin for the MR0D08BMA45

1Mb [128Kb x 8 configuration] Everspin MRAM in 48-ball BGA Package

INTRODUCTION

This Application Note is provided as a reference document substantiating the use of a single V\textsubscript{DD} supply for the MR0D08B MRAM Family in 48-BGA packages.

MR0D08B BGA PACKAGE DESIGN

The MR0D08B MRAM die is designed with four V\textsubscript{DD} pads that are electrically connected with negligible impedance (0.2 Ohms) between each pad. The BGA substrate used in manufacturing the device directly connects pins A6 and C2. Wire Bonds are attached between the substrate and each of the four V\textsubscript{DD} pads on the die as shown in the cross sections in the figures that follow. This double bonded structure allows for redundancy as well as an even distribution of I\textsubscript{DD}. Such a structure, while optimal for redundancy and distribution of I\textsubscript{DD} is not a requirement for operation.

EFFECT OF USING A SINGLE VDD PIN

The Current Carrying Capacity of each of the Bond Wires is sufficient to support the maximum load of the die under worst case conditions without impacting the performance of the IC. Tests conducted by the Package subcontractor validate the minimal impact of using a single V\textsubscript{DD} on this device. Tests have also validated that any resistance imbalance due to using a single V\textsubscript{DD} pin have proven to have minimal impact on the current distribution of the bond wires. It should be noted, that any increase in resistance and inductance due to using a single V\textsubscript{DD} pin may cause a voltage drop seen by the device under worst case conditions to be in the range of several 10’s of mV. Summarizing, adequate margin in the design of this device supports the use of a single V\textsubscript{DD} supply pin for the MR0D08B product family under worst case conditions.

NOTE:

Both A6 and C2 balls are internally connected to each other on the BGA package substrate. If only one ball is connected to V\textsubscript{DD} on the PCB, both balls will be at V\textsubscript{DD} potential and the unused ball/landing pad on the PCB must be left unconnected to anything other than V\textsubscript{DD}.
PACKAGE SIMULATION with Balls A6 and C2 connected to V_{DD}

Cross Sections

Connectivity from solder balls to die

Electrical Simulation

Package Electrical Characteristics (Test frequency 1GHz)

<table>
<thead>
<tr>
<th>Net Branch</th>
<th>R (mΩ)</th>
<th>L_s (nH)</th>
<th>L_m (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Pads 13 and 14 to balls A6 and C2</td>
<td>168.8</td>
<td>2.21</td>
<td>0.03</td>
</tr>
<tr>
<td>From Pads 41 and 42 to balls A6 and C2</td>
<td>159.8</td>
<td>2.51</td>
<td></td>
</tr>
</tbody>
</table>

R - DC Resistance L_s - Self Inductance L_m - Mutual Inductance
PACKAGE SIMULATION with Ball A6 only connected to V_{DD}

Cross Sections

Connectivity from solder balls to die

Electrical Simulation

Package Electrical Characteristics (Test frequency 1GHz)

<table>
<thead>
<tr>
<th>Net Branch</th>
<th>R (mΩ)</th>
<th>Ls (nH)</th>
<th>Lm (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Pads 13 and 14 to ball A6 only</td>
<td>388.06</td>
<td>6.12</td>
<td></td>
</tr>
<tr>
<td>From Pads 41 and 42 to ball A6 only</td>
<td>193.76</td>
<td>3.09</td>
<td>1.65</td>
</tr>
</tbody>
</table>

R - DC Resistance Ls - Self Inductance Lm - Mutual Inductance
TEST RESULTS

Access Times at 90°C

Access Times (ns) @ 90C, 3.0V

Access Times (ns) @ 90C, 3.3V

Access Times (ns) @ 90C, 3.6V

Access Times at -15°C

\(T_{WHAX} -15°C \) (ns)

\(T_{AVQV} -15°C \) (ns)
CONCLUSION

Review of the package interconnects of the MR0D08B device along with electrical simulation and statistically acceptable sample results confirm the use of a single \(V_{DD} \) for the MR0D08B. Summarizing, adequate margin in the design of this device supports the use of a single \(V_{DD} \) supply pin for the MR0D08B product family under worst case conditions.

NOTES:

1. A note of caution reminds the designer that though the use of both the A6 and C2 pins are not required for proper operation, due to the internal connection of these pins, it is important that any unused \(V_{DD} \) pin remains isolated from use because \(V_{DD} \) will be present on the unused solder ball.
2. The designer is reminded to review the impact, if any, to their design due to the potential impedance change in the device as a result of using a single \(V_{DD} \).
Using a Single V_{DD} pin for the
MR0D08BMA45

Everspin Technologies, Inc.

Information in this document is provided solely to enable system and software
implementers to use Everspin Technologies products. There are no express or implied
licenses granted hereunder to design or fabricate any integrated circuit or circuits based on
the information in this document. Everspin Technologies reserves the right to make
changes without further notice to any products herein. Everspin makes no warranty,
representation or guarantee regarding the suitability of its products for any particular
purpose, nor does Everspin Technologies assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters, which may
be provided in Everspin Technologies data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters
including “Typicals” must be validated for each customer application by ‘-customer’s
technical experts. Everspin Technologies does not convey any license under its patent rights
nor the rights of others. Everspin Technologies products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support or sustain life, or for any other application in which
the failure of the Everspin Technologies product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Everspin Technologies products for
any such unintended or unauthorized application, Buyer shall indemnify and hold Everspin
Technologies and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Everspin Technologies was
negligent regarding the design or manufacture of the part. Everspin™ and the Everspin logo
are trademarks of Everspin Technologies, Inc. All other product or service names are the
property of their respective owners.

How to Reach Us:
Home Page:
www.everspin.com

E-Mail:
support@everspin.com
orders@everspin.com
sales@everspin.com

USA/Canada/South and Central America
Everspin Technologies
1347 N. Alma School Road, Suite 220
Chandler, Arizona 85224
+1-877-347-MRAM (6726)
+1-480-347-1111

Europe, Middle East and Africa
support.europe@everspin.com

Japan
support.japan@everspin.com

Asia Pacific
support.asia@everspin.com

©Everspin Technologies, Inc. 2013

Single Vdd for MR0D08B in 48-ball BGA Package_AppNote_EST1874_Rev1
Author: Chuck Bohac, Manager Applications Engineering, Everspin Technologies chuck.bohac@everspin.com, 480-347-1161

Everspin Technologies ©2013 6 Application Note EST01874, 4/2013