
www.everspin.com Everspin Technologies

App Note

Accelerating Fintech Applications with Lossless and
Ultra-Low Latency Synchronous Logging using nvNITRO

The financial industry is continually reinventing itself as each new generation of technology
becomes available, making trading systems faster and more efficient. This ongoing cycle of
improvement has even led to a new term for an emerging financial services sector revolu-
tion called “FinTech.”

But as more financial systems try to increase their transaction throughput, this trend has also
led to uncontrolled market scenarios, such as the “Flash Crash” in 2010. This crash resulted
in further tightening of regulations and control measures which require the participating
clients to log details of transaction orders and any transaction status changes. Additionally,
traders are also required to maintain these records for at least 5 years. The created transac-
tion logs are critical for ensuring investor transparency and protection from any foul play. In
the case of compliance audits or any question regarding a transaction, these systems enable
transactions to be inspected and replayed back.

This application note explores how Everspin nvNITRO™ technology can improve FinTech
performance without creating additional risks from compliance.

Introduction

Copyright © 2018 Everspin Technologies, Inc. 2 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

The Challenge of Regulations on Trading Performance
FINRA (Financial Industry Regulatory Authority), MiFID II (Markets in Financial Instruments Directive) and many
other financial regulatory bodies or requirements are now demanding that transacting clients log & timestamp
(global) order details, transaction communications, as well as log all order status changes such as:

Accepted for bidding Calculated Canceled Done for day

Expired Filled New Partially filled

Pending cancel Pending new Pending replace Rejected

Suspended Stopped

Question: What happens if order execution information and transaction data (logs) are lost?

This is a very real situation that could happen, but it all depends on the architectural decisions that are made
with regards to logging and storing order information.

If the company gets audited for the transactions and the auditor finds the company has incomplete or missing
transaction log data due to a failure to implement data protection “by design and by default,” it may result in:

• Monetary fines up to or in excess of millions of dollars

• Suspension from trading in the market for some days or months, which itself could result in the loss of mil-
lions to hundreds of millions of dollars depending on the size of the company

• Other types of trade or monetary sanctions

Transaction Types

Financial Assets

Equities
(Shares/Stock)

Fixed Income
(Bonds, CDs etc.)

PropertyCommodities
(Metals, O&G etc.)

Cash & Forex Derivatives

Pr
ot

oc
ol

(F
IX

, F
A

ST
 e

tc
.)

Institutional Investors

Investment Banks

Hedge Funds

Mutual Funds

Asset Management

Venture Capital

Private Equity

Protocol
(FIX, FA

ST etc.)

Trading Institutions

Liquidation Orchestration

Stock Exchanges

Commodity Exchanges

Peer Buyer/Seller
(ECN)

Protocol
(FIX, FA

ST etc.)

Pr
ot

oc
ol

(F
IX

, F
A

ST
 e

tc
.)

Order Processing

Brokerage

Order Routing Systems

Order Management Systems

Event Management & Logging

Algo-Trading Systems Architecture
Data Storage

News

Market
Feeds

Data BI &
Warehouse

Feed
Handler

Models & Decisions

• Trend & Analysis

• Quant Algorithms

• Pattern Analysis

• Historical Analysis

• Market Analysis

• Other Inputs …

Network Latency
(~1uS+)

1 Application Latency
(<1uS to 100us+)

2 Logging Latency
(100ns -1ms+)

3 Network Latency
(~1uS+)

4 Proximity Latency
(<1uS to 100ms+)

5

Order Processing

Event
Management

Message
Processing

Compliance
(Transaction History &

Record Logs)

Order Routing

©
 Ev

er
sp

in
 Te

ch
no

lo
gi

es
 In

c.

Figure 1: End-to-end overview of typical financial trading system

http://www.finra.org/
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir

Copyright © 2018 Everspin Technologies, Inc. 3 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Transaction Logging Architecture
Trading systems use existing or custom logging service
platforms such as Log4J, Log4J2, Logback, or Chronicle.
For a moment let’s focus on the section 3 of the entire
trading system from Figure 1. The two most common
ways to implement order detail and transaction event
logging are synchronous logging and asynchronous
logging.

Synchronous Logging: In this case the system waits un-
til the logging data is committed to persistent storage
media such as disk drives, SSDs or other non-volatile
devices before beginning the next transaction. For syn-
chronous logging the biggest advantage is that even in
the case of a power failure or any other adverse situa-
tion, the log data is lossless; it is guaranteed to be re-
tained after power is restored. In the case of the trans-
action not completing or application state needing to
be reviewed, the transaction can be played back. But a
big disadvantage of synchronous logging is that the la-
tency of writing to a storage I/O device limits the perfor-
mance of the entire transaction. The fastest storage me-
dia devices available are flash-based SSDs which have
average 100% random write latencies of 30µs or more
but typically exhibit latency in the 100µs range for 4KB
block sizes and queue depth (QD) of 1. For high frequen-
cy trading (HFT) or many algorithmic (algo) trading sce-
narios (especially where trading institutions are located
in close proximity), 30µs of latency will dominate the
entire transaction, ultimately impacting overall trading
performance. Because of the performance advantages
of lower latency, many HFT-type systems are physically
located next to trading exchanges in co-location cen-
ters, connected with the fastest network links in order to
keep latency absolutely minimal.

Asynchronous Logging: In this case, the system does
not have to wait until the logging data is committed to a
persistent storage media device in order to start the next
transaction. Trades can be performed asynchronously
(in parallel) with data logging work. Typically, there is a
ring buffer or memory mapped file (mmap) that is stored

in system memory. A separate thread writes the log-
ging data as fast as possible to the memory and another
thread pulls data out from shared memory and writes
to persistent media. The sequential ring buffer data or
mmap file is pulled out in larger chunks and flushed
to filesystem or persistent media using techniques like
fsync, msync or o_sync when opening the file.

This method has a large advantage in latency as writing
log data to memory is in the 100ns range and the system
can run as fast as possible, at the speed of the system
memory. But there is a large drawback to an asynchro-
nous logging implementation: power failures can result
in all transactions and order data in the memory being
lost. Since the mmap’ed file or ring buffer could contain
1000’s of records, a company could lose data for many
transactions due to an unexpected failure. Interestingly
this data is the most critical information that is needed
to reconstruct the transactions after failure when the
system is restored, but in an asynchronous logging sce-
nario where the data was never written to a persistent
location in time, that information is lost forever.

Figure 2: Logging transaction details

Logging Latency
(100ns -1ms+)

3

Event
Management

Message
Processing

Compliance
(Transaction History &

Record Logs)

Copyright © 2018 Everspin Technologies, Inc. 4 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Architectural Decisions
Many companies who are executing financial trades
close to speed of light, e.g. HFT type applications, may
opt to choose “performance over persistence.” The ar-
chitectural choices that these companies make are
designed to provide persistence for memory through
sub-optimal means, utilizing strategies like:

• Uninterruptible power supplies (UPS) backed
server compute racks

• Capacitor or battery backed NVRAM cards

• Battery backed NVDIMM’s or NVDIMM-N

In these architectural cases, when a power failure
happens, the system will keep backup power for the
memory subsystem available until all memory con-
tents have been transferred to a non-volatile device
such as NAND flash. This process may last for only a
few seconds. When system power is restored, the data
will be transferred to a more permanent storage me-
dia. In the case of a catastrophic failure of a datacen-
ter, UPS, batteries or super-capacitors, the transaction
information that was still in memory and not commit-
ted to storage media will be lost. In such cases, the
company may fail a regulatory audit, facing penalties,
and possibly may have to rebuild transaction history
from exchange logs. But customer orders that were in
memory at the time of the failure that had not been
received by the exchanges may possibly never be re-
covered.

It is a balancing act by designers and engineers to
gauge risk versus reward. In the case of synchronous
logging, today’s fastest NAND-based SSDs can deliver
low 20-60µs average latencies. Even though, for many
algo trading scenarios, sub microsecond latencies
may not be needed, the designers may still opt for
asynchronous logging because of the latency distri-
bution curves of flash-based SSDs (which have a long
latency tail). For example, 99.99% latency for SSD me-
dia could be up to 100x slower and too far out, some-
times extending into the millisecond (ms) range. This
is not good for many trading scenarios under high
volume load or other cases where repeatable and de-
terministic execution performance is critical.

STT-MRAM Technology Changes Status Quo
Until now, the memory technology available to de-
signers has been volatile, meaning after power is re-
moved, the data contents in the memory are lost. But
with the introduction of 256Mb STT-MRAM by Ever-
spin Technologies, systems can now have memory
which has high performance like DRAM but provides
a persistent data storage that is non-volatile.

STT-MRAM stands for spin-transfer torque magneto-
resistive random access memory. Any data written to
STT-MRAM devices is natively persistent and does not
require any batteries or supercapacitors. Data is cap-
tured by writing to a memory array that manipulates
electron spin with a polarizing current. STT-MRAM
performs like DRAM but requires no refresh. The cur-
rent interface available is ST-DDR3 which is very simi-
lar to standard JEDEC DDR3. ST-DDR4 interfaces will
be also available in the future, bringing higher speed
and higher capacity.

Figure 3: STT-MRAM

Copyright © 2018 Everspin Technologies, Inc. 5 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Some of the benefits of STT-MRAM technology are:

• Non-volatile data

• Performance characteristics similar to DRAM
memory

• Billion+ cycles of data endurance

• DDR3 compatible footprints and future DDR4
compatible footprints

• ST-DDR3 interface and future ST-DDR4 interface

• Byte writes and reads (no blocks)

nvNITRO Storage Accelerator (NVMe)
To facilitate system designers and engineers who
want to use this revolutionary technology in their ap-
plications right away, Everspin has developed nvNI-
TRO technology which enables a persistent memory
storage accelerator card to be built with STT-MRAM.
Everspin is the creator of the technology, but the ac-
celerator cards themselves will be marketed and sold
by SMART Modular Technologies under the name
MRAM NVM Express Card. nvNITRO is a great solu-
tion for acceleration of lossless and ultra-low latency
(ULL) synchronous logging. These products can span
multiple industries where transaction processing and
recording are critical.

Highlights of nvNITRO storage accelerators include:

• Interfaces & Form factor

• PCIe x8 Gen3 Half Height LP

• U.2 x4 Gen3

• Capacity: 1GB and 2GB STT-MRAM

• Latency: Ultra-low < 7.2μs*

• Deterministic latency distribution with virtually
no tail

• Performance: Up to 1,500,000 IOPS

• Durable, persistent memory

• Two access modes:

• Block based (NVMe)

• Memory mapped I/O

• Endurance: 1,000,000,000+ cycles

• Peer-To-Peer

• PeerDirect (OFED compatible)

• Fully offloaded NVMe over fabric

• Standard Windows/Linux NVMe drivers

• No need for batteries or supercaps

* 4KB block, 100% random writes, completion latency, Queue Depth (QD) = 1

nvNITRO - Low Latency and Lossless Circular
Write Buffer
nvNITRO enables a system application to write or log
large amounts of data at the full performance of in-
coming data while maintaining deterministic and ex-
tremely low latencies under 10µs. STT-MRAM’s high
performance, persistent memory enables a customer
to utilize a single nvNITRO card as a front end con-
nected to less expensive back end storage devices,
which ultimately lowers the overall solution cost.

Figure 4: nvNITRO storage accelerators

Copyright © 2018 Everspin Technologies, Inc. 6 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Refer to Figure 5 which shows an implementation
of a 1GB nvNITRO accelerator as a very high perfor-
mance, low latency, and lossless write buffer in front
of an array of economically priced SSDs or hard disk
drives. Highly random bursts of incoming high-speed
data are fed to a circular (ring) buffer implemented in
the nvNITRO NVMe storage device. No special driver
is needed to utilize nvNITRO capabilities. By default,
the nvNITRO presents itself as NVMe device and uses
industry-standard Linux or Windows NVMe drivers.

The application software uses two threads with one
thread writing the data to the buffer at full speed and
the other thread emptying contents of the circular
buffer in large batches of few kilobytes (KB) or more.
Since nvNITRO uses STT-MRAM, data written to it is
safe as soon as it written, enabling the writer thread
to instantly post back a completion and begin pro-
cessing the next work item. The entire system does
not have to wait until the data is written to the disk
drives or SSDs. The reader (drain) thread is very effi-
cient because it can take larger chunks of data in the
buffer and stream them to storage devices such as
disk drives or SSDs. The storage devices, including ro-
tating disks, are very efficient in handling sequential
and large streams of data so customer applications
using nvNITRO can use more cost-effective storage
media devices.

This implementation allows for writing terabytes
(TB) to petabytes (PB) of data and logging informa-
tion with a very economical solution while maintain-
ing lowest latency, high performance and power loss
protection for data. No UPS, batteries, NVDIMMs, or
supercapacitors are required because nvNITRO is in-
herently power fail safe through its use of STT-MRAM
persistent memory technology. If architected correct-
ly one may not even need expensive enterprise class
SSDs because power loss protection (PLP) is already
provided by the nvNITRO, but a minimum of FTL pro-
tection will still be required for those SSDs (which is
present in virtually all enterprise SSDs in the market
today).

Real-world Synchronous Logging Applica-
tions – Log4j, Java or C++
As we discussed early in this application note, most
trading systems are required to log transaction details
and their changing status. For this discussion, we will
leave aside HFT for a moment which uses asynchro-
nous logging to keep up with nanosecond responses.
Most algo trading and other types of trading systems
can benefit from the simplicity and robustness of a
high performance, lossless and low latency logging
design that can be implemented with a circular buf-
fer using nvNITRO as detailed in the previous section.

 Figure 5: Implementing a lossless and low latency circular buffer

Written in large block sizes

Array of less expensive devices
(SSDs or hard drives)

nvNITRO
write bu�er

Incoming Data
 Variable Rate
 Bursts
 Latency sensitive

Application Requirements
Power Loss Protection

Persistent Data
Low Latency & High Performance

Copyright © 2018 Everspin Technologies, Inc. 7 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

A very popular and extensive logging framework
used by many companies is Log4j or Log4j2 in Java.
Refer to Figure 6, which shows an application that
was developed to accelerate Log4j synchronous log-
ging using nvNITRO as a circular buffer.Key solution
goals for this lossless and low latency logging soft-
ware were as follows:

• Support any Java or C/C++ application with na-
tive APIs

• Provide custom appender plugin for plug-n-play
working with Log4j

Design considerations are as follows:

• nvNITRO will be used as a raw NVMe device, i.e.
no file system will be mounted on the nvNITRO

• To prevent data loss in between stages, any
writes to nvNITRO or local storage media will be
passed through without any caching

• Use of an independent writer thread which
writes into the circular buffer and reader thread
(draining) from the circular buffer

• Use of shared memory for buffer offset coordina-

tion to avoid race conditions between the writer
and drain threads which effectively throttles
both sides using busy waits

• The message records written to the storage
media by the drain thread can be written in raw
format or standard file system

• Message record structure is designed for optimal
performance by avoiding multiple accesses of
data in the buffer

• The message records in the buffer are variable
length strings with a minimum size equal to the
block size of the device

• Basic metadata information will be included in
the head of the message record – read/write flag,
message length, message sequence number, etc.

Key components to this architecture shown in Figure
6 and 7 are as follows:

Application: Any customer application written in
Java, C/C++ or using Log4j framework that requires a
lossless, low latency and high performance synchro-
nous data logging capability.

Written to in multiple
message chunks

Array of less expensive devices
(SSDs or hard drives)Incoming Messages

 Variable Rate
 Bursts
 Latency sensitive

Custom
Appender

JNA

Burst Writer
(written in C)

Drain & Store
(written in C)

nvNITRO
write bu�er

Logging Applications
(Java, C/C++, Log4j)

Java

C/C++

Logging Accelerator Custom Software

Figure 6: Lossless, low-latency and high performance Log4j acceleration

Copyright © 2018 Everspin Technologies, Inc. 8 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Burst Writer (Raw): This process is written in C and is
responsible for handling and writing incoming vari-
able length log messages to the nvNITRO circular buf-
fer. The log data is written in raw format to the circular
buffer. In rare cases, the application may also expe-
rience backpressure when the reader thread has not
drained enough of the messages to make room for
writer thread to write into the circular buffer. With a
properly designed system that maximizes incoming
message rates, one should not run into this situation.

Drain & Store (Raw/File): This process is also written
in C and is responsible for handling reading from the
nvNITRO circular buffer in fixed batch sizes. The pro-
cess then stores that data in a slower array of persis-
tent storage media such as SSDs or disk drives as a
large streamed data. The log data is read in raw for-
mat from the circular buffer but can be written to the
storage array or devices with filesystem or in raw for-
mat. In case there are no new write log messages in
the circular buffer, the reader thread just waits.

Shared Memory (Thread Co-ordination): This is a
very small shared memory section in the system RAM
to manage writer and reader thread offsets to handle
race conditions and busy waits. Power failure does not
have an impact even if the shared memory contents

are lost as the message data is already present in the
circular buffer inside the nvNITRO and each message
metadata already has details about which data that
has already been read or not. In case the application
wants to go further, the application developer could
possibly make use of MMIO region in nvNITRO.

Persistent Memory Mapped I/O Regions
In addition to NVMe block mode access to the de-
vice, nvNITRO also supports a MMIO region which is
mapped as a BAR (Base Address Register) in the PCIe
address space. nvNITRO can be partitioned in such a
way that both regions are available to the user: block
and memory mapped region. One caveat to using
the MMIO region is that users must develop their
own driver to access this region. Since any data writ-
ten to the device is persistent, the memory mapped
data is also persistent. Hence users could potentially
implement the shared memory in the MMIO region.
The proof of concept system that was developed
and showcased in this application note used system
memory for shared memory. The MMIO region and
NVMe block region can be set in such a way that any
percentage of total available space can be partitioned
for one or the other.

Shared Memory
Thread Coordination

Application Types

Java C/C++

Burst Writer
(Native C)

Custom Appender

via JNA

via JNA Native

Drain & Store
(Native C)

WRITE (Raw)

RE
A

D
 (R

aw
)

STORE (File)

Local
Data Storage

NVMe or SATA
SSDs or Disk Drives

RDMA
Fabric

Remote
Data Storage

NVMe
Over Fabrics

1- Many OR Many -1
Remote Logging

RoCE or In�niBand

nvNITRO™
write bu�er

Figure 7: Lossless, low latency and high performance synchronous logging architecture using nvNITRO

Copyright © 2018 Everspin Technologies, Inc. 9 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Results
The tests were run by simulating high-speed incom-
ing messages for different application scenarios
where nvNITRO was used as a circular burst buffer be-
fore the data was stored in the larger storage media
such as SSDs and disk drives:

1. Java application using JNA to interface with
“Burst Writer.”

2. Java application using Log4J. In this case a
custom Java appender was used with JNA to
interface with “Burst Writer,” but no change in
customer application code is required.

3. Finally, a high-performance Enterprise NVMe SSD
was used to compare logging performance when
“Burst Writer” does not use nvNITRO and data is
written directly to the enterprise NVMe SSD.

Considerations
Note that the latency results will be dictated by com-
pletion latencies of the nvNITRO burst buffer device
along with the code path latency and submission
latency. In the case of Java applications, the latency
will be higher than the C/C++ applications because of
additional JNA code. In the case of Java applications
that uses Log4J framework, even higher latency will
be present due to the Log4J code path as well as the
custom Java appender layer.

No extra efforts were made to further tune the oper-
ating system (OS) and BIOS for latency improvements.
Hyper-threading was turned ON, but for relative mea-
surements, this was not considered an issue.

In the case of Java applications, garbage collection
(GC) will also impact latency jitter. During JVM warmup
time, higher latencies will be observed. Hence, the re-
sults shown here will consider data points after the
JVM is warmed up and is in a stable state.

Centos 7.x with kernel version 3.10 was used as the
operating system and the drain thread copied the
data from the nvNITRO burst buffer to the Enterprise
class NVMe SSD.

Case 1: Java application using JNA to interface with
“Burst Writer”

Figure 8 shows a per message latency chart of all
messages, but the metrics summary shown below for
latency distribution only uses the last 1 million mes-
sages in order to allow for JVM warmup.

As can be seen from the results, the average latency
of the logging solution through the entire stack in-
cluding the Java layer, the application layer, the JNA,
the NVMe driver and the nvNITRO accelerator was
only 12µS. However, what is really outstanding is that
through the entire Java application stack, the 99.99%
latency was only 26µS. The latency distribution of this
application case is excellent.

Figure 8: Java Application: Results of per message latency for all messages

Copyright © 2018 Everspin Technologies, Inc. 10 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Case 2: Java application using Log4J and Java ap-
pender w/ JNA to interface with “Burst Writer”

Figure 9 shows per message latency chart of all mes-
sages, but the metrics summary shown below for the
latency distribution only uses the last 1 million mes-
sages in order to allow for JVM warmup.

As can be seen from the results, the average latency of
the logging solution through the entire stack includ-
ing the Java layer, the Log4J framework, the applica-
tion layer, the custom Java appender, the JNA, the
NVMe driver and the nvNITRO accelerator was only
13µS. Similar to the first case, what is truly amazing
is that through the entire Java application stack and
Log4J framework, the 99.99% latency was only 28µS.
The latency distribution of this application case for
synchronous logging is unmatched in the industry.
Also note that the customer does not have to mod-
ify any part of their code; it is all plug and play with
Log4J. The custom appender with the JNA interface
to the “Burst Writer” library does all of the work under
the hood to make this happen and uses the nvNITRO
storage accelerator as a burst buffer. Compared to the
Java application case where the user has to interface
to JNA for the “Burst Writer” library, only 2µS of addi-
tional latency were added for the average and 99.99%
distribution deviations.

Case 3: Compare With & Without nvNITRO “Circular
Buffer” in a Log4J-based application

Figure 10 shows a comparison of synchronous log-
ging latency of an application using Log4J framework:

With an nvNITRO circular burst buffer application (in
green)

Without an nvNITRO circular burst buffer and instead
writing directly to a NVMe enterprise SSD (in red)

For a moment, if we ignore the green latency results
and focus on the result shown in red on the chart,
we can see that for a solution using a very fast NVMe
SSDs without an STT-MRAM based burst buffer, laten-
cy will be up to 9X higher. It is also very evident from
just looking at the distribution of the red chart that it
has a large spread and the latency tail actually keeps
going to the right.

Note that latency distribution curve is very tight and
the spikes for the “With nvNITRO” case were so high
and narrow that the chart was cropped on the top.
In the “Without nvNITRO” case, the latency tail was so
long to the right that the chart was cropped on the
right. From the data, it showed that 99.9% latency of
the enterprise NVMe SSD was up to 80X worse than
the case where nvNITRO was used for a circular burst
buffer.

Figure 9: Log4J framework: Results of per message latency for all messages

Copyright © 2018 Everspin Technologies, Inc. 11 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

What does this all imply? By simply using an nvNI-
TRO storage accelerator in front of the same high
performance SSD or array of such SSDs, customers
can completely change the dynamics of applications,
performing synchronous logging nine times faster.
Imagine the benefits to a financial application such as
algo-trading with a 90% reduction in latency for syn-
chronous logging.

Benefits
Up to 9x Performance – Improvement of logging
latency over other fast enterprise NVMe SSDs.

Lossless – Fully persistent and synchronous logs.

Deterministic Performance – Very tight latency
distribution curve with virtually no tail enables trad-
ing systems to perform consistently well, even under
heavy load with an up to 80x latency improvement
at 99.9%.

Failsafe protection of data – All data written into
the nvNITRO is immediately persistent. No lag be-
tween posted writes and a commit.

Overall Economical Solution – By using nvNITRO as
a burst circular buffer, customers do not have to pur-
chase expensive SSDs or disk arrays for their backend
log storage.

Embedded STT-MRAM burst buffers – It is possible
to get benefits similar to nvNITRO but by using STT-
MRAM directly in FPGA-based trading systems and
running burst buffers right on the board, next to the
FPGA at the speed of memory, while maintaining
persistence of logs.

Future - Remote Logging over RDMA Fabrics
In addition to storing the log data locally, many com-
panies want to consolidate the log data from multiple
trading systems into a centralized storage system.
There could be situations where the same trading
system needs to log data to multiple different stor-
age systems depending on the log data type and its
criticality. Either of these cases, (1-to-many OR many-
to-1) can be achieved in a variety of ways. nvNITRO
has been verified to work successfully in an RDMA (re-
mote direct memory access) fabric and in networks
such as InfiniBand or RoCE (RDMA over converged
Ethernet) as a block or memory device.

Figure 10: Compare Log4J Performance: With nvNITRO circular burst buffer vs. direct log-
ging to an enterprise SSD without nvNITRO burst buffer

0

5000

10000

15000

20000

25000

30000

35000

40000
0.

0
2.

3
4.

6
6.

9
9.

2
11

.4
13

.7
16

.0
18

.3
20

.6
22

.8
25

.0
27

.3
29

.6
31

.9
34

.2
36

.5
38

.8
41

.1
43

.4
45

.7
48

.0
50

.3
52

.6
54

.9
57

.1
59

.4
61

.7
64

.0
66

.3
68

.6
70

.9
73

.2
75

.5
77

.8
80

.1
82

.4
84

.7
87

.0
89

.3
91

.6
93

.9
96

.2
98

.5

Message Log Write Latency Distribution nvNITRO™ vs Enterprise SSD

-

FAST SLOW

Slow and highly variable
latency response

Other Enterprise NVMe SSDs

N
um

be
r o

f L
og

 M
es

sa
ge

s

Message Logging Latency

Message LogWrite Latency Distribution - nvNITRO vs. Enterprise SSD

nvNITRO with
STT-MRAM

Lower, deterministic latency,
virtually no tail

Copyright © 2018 Everspin Technologies, Inc. 12 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Remote Persistent Memory - By using Mellanox 40Gb
ConnectX-3 based InfiniBand fabric and OFED drivers,
nvNITRO was successfully used as a remote persistent
memory. Standard OFED drivers were used to map
remote memory regions in an RDMA network. Stan-
dard OFED tests for bandwidth and latency were used.
Going one step further, nvNITRO was used as a Peer-
to-Peer device with a Mellanox IB device using a cus-
tom-compiled PeerDirect driver to enable full bypass
of CPU and host memory in the target system. Data
could be written and read from the remote persistent
memory region in nvNITRO over the 40Gb RDMA fab-
ric with end-to-end latencies lower than 3µs.

NVMe over Fabrics (NVMeOF) - By using a Mellanox
100Gb ConnectX-5 based InfiniBand fabric, which pro-
vides an RDMA connection between systems (or possi-
bly any other compliant RoCE based network devices),
nvNITRO was successfully used as an NVMe target device
in a remote system. Even though this application note
only details a local logging system, it is very possible to
connect to another nvNITRO in remote machine as an
NVMeOF target and map it to the local system, drain-
ing the log data remotely. There is potentially another
method where the drain and source are also handled in
the remote device. By deploying nvNITRO in the trading
systems locally as well as in remote targets, very flexible
and high performing systems can be achieved.

nvNITRO was able to achieve a full 1.5Million IOPs, 6GB/s
BW over a 100Gb IB link for 4KB block sizes in a 100% ran-
dom write traffic pattern as a NVMeOF target device. The
end-to-end latency for QD1 was less than 20µS across
that RDMA fabric.

Conclusion
This application note outlines how nvNITRO, built with STT-MRAM technology, can enable a lossless, low latency,
deterministic, and high performance synchronous logging solution for the financial industry - all at a lower overall
solution cost.

The results have shown that the nvNITRO storage accelerator can supercharge FinTech applications by removing
bottlenecks from applications when used as a circular burst buffer. Most importantly, the persistence of STT-MRAM
means that log data is protected, reducing the risk of penalties for lack of compliance, which can have a significant
impact on the overall profitability of a trading company.

Copyright © 2018 Everspin Technologies, Inc. 13 1.0 January 2018

App Note
Accelerating Fintech Applications with Lossless and

Ultra-Low Latency Synchronous Logging using nvNITRO

Contact Information:

Author:

Pankaj Bishnoi

Director of System Applications

WW Sales Group

How to Reach Us:

www.everspin.com

E-Mail:

support@everspin.com

orders@everspin.com

sales@everspin.com

USA/Canada/South and Central America

Everspin Technologies

5670 W. Chandler Road, Suite 100

Chandler, Arizona 85226

+1-877-347-MRAM (6726)

+1-480-347-1111

Europe, Middle East and Africa

support.europe@everspin.com

Japan

support.japan@everspin.com

Asia Pacific

support.asia@everspin.com

Everspin Technologies, Inc.
Information in this document is provided solely to enable system
and software implementers to use Everspin Technologies prod-
ucts. There are no express or implied licenses granted hereunder
to design or fabricate any integrated circuit or circuits based on
the information in this document. Everspin Technologies reserves
the right to make changes without further notice to any products
herein. Everspin makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose,
nor does Everspin Technologies assume any liability arising out of
the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation conse-
quential or incidental damages. “Typical” parameters, which may
be provided in Everspin Technologies data sheets and/or specifi-
cations can and do vary in different applications and actual per-
formance may vary over time. All operating parameters including
“Typical” must be validated for each customer application by cus-
tomer’s technical experts. Everspin Technologies does not convey
any license under its patent rights nor the rights of others. Ever-
spin Technologies products are not designed, intended, or au-
thorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of
the Everspin Technologies product could create a situation where
personal injury or death may occur. Should Buyer purchase or use
Everspin Technologies products for any such unintended or un-
authorized application, Buyer shall indemnify and hold Everspin
Technologies and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges
that Everspin Technologies was negligent regarding the design
or manufacture of the part. Everspin™ and the Everspin logo are
trademarks of Everspin Technologies, Inc. All other product or ser-
vice names are the property of their respective owners.

Copyright ©2018 Everspin Technologies, Inc.

